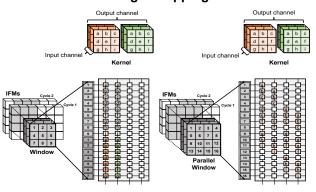


2024

Advisor: Dr. Jong Hwan Ko https://iris.skku.edu/

IEEE ISCAS Ph.D. Forum

Johnny Rhe Sungkyunkwan Univ. djwhsdj@skku.edu

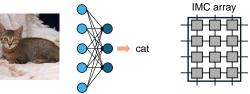

Optimizing Convolutional Weight Mapping for Energy-Efficient In-Memory CNN Inference

Research Abstract

- In-Memory Computing (IMC) architectures are increasingly being used for the convolutional neural networks (CNNs) inference
- Mapping method is important to reduce computing cycles for minimizing the energy consumption
- This research aims to develop mapping-aware optimization for energy-efficient CNN inference in IMC architecture through algorithmic, network architectures and their training innovations

Background

Convolutional Weight Mapping Methods


- ☐ Image to Column (im2col)
- Basic mapping (Fig.1 (a))
- 3D kernel to array column
- ☐ Shift and Duplicate Kernel (SDK)
- Advanced mapping method
- Deployment of duplicated kernels
- SDK mapping improves utilization and reduces cycles
- → However, it still faces limitations, including limited utilization enhancement and irregular weight deployment

Motivation

- § Recent networks
- Weights: 1 Mega ~ 150 M params
- Inputs: 32 x 32 ~ 1024 x 1024 (~1K pixels) (~1M pixels)

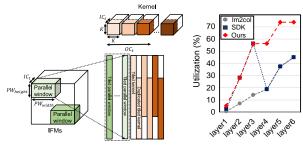
§ Recent single array

- Size: 32x32 (~1K cells)
 - ~512 x 512 (~0.26 M cells)

How to map?

- § Determines 100~100,000 computing cycles
 - Energy consumption
 - Inference latency

□ Limitation on Recently Used Single Array Sizes

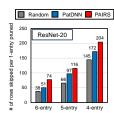

- Computing cycle is determined by mapping method
- Unable to map the entire weight matrix of convolutional layer
- → A new mapping method is needed to minimize cycles

□ Need for Weight Compression for Mapping Efficiency

- # weight params. >> # memory cells in single IMC array
- Limited efficiency when using only mapping methods
- → New mapping-aware weight compression is required

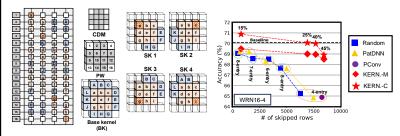
Proposed Method & Results

1. Novel Mapping Method



- ☐ Various Window SDK (VW-SDK) [DATE 2022]
- Dividing the channels into several tiles (channel tiling)
 - → Deploying duplicated kernels in limited array sizes
- Various 2D shapes of the parallel window
- → Extended search space of PW shapes

2. Weight Compression w/ Weight Pruning


- □ Variable Windows & Channels SDK [JETCAS 2022]
- VW-SDK + channel pruning
- Removes some channels that lead to low array utilization
- → Further optimize the VW-SDK mapping method

- Pruning-Aided Row-Skipping (PAIRS) [ISLPED 2023]
- Row-skipping via pattern-based pruning to compress weight matrix
- SDK mapping-aware pruning pattern design
- → Maximum weight matrix compression rate

3. Weight Compression w/o Weight Pruning

- ☐ Kernel Shape Control (KERNTROL)
- KERN.-M: weight omission technique [ICCAD 2023]
- → Prevents pruning the important weight element
- KERN.-C: KERN.-M + compensatory weights [TCAS-I 2024]
 - → 100% array utilization + minimize accuracy drop

Author's Info.

- 9+3 International Conference papers (DATE 2022, ISLPED 2023, ICCAD 2023)
- 3+1 International Journal papers (TCAS-I 2021, 2024, JETCAS 2022, 2024)
- Most Popular Poster Award at ASP-DAC 2024